
In Hardware We Trust
Enriching the World with Hardware Security

JV Rajendran

Texas A&M University

Hack@DAC2018: Overview

• Deep dive into hardware bugs and detection techniques

Hack@DAC2018: Overview

• Deep dive into hardware bugs and detection techniques

• A RISC-V SoC testbed with injected bugs constructed in
collaboration with Intel hardware security professionals

• 54 teams from industry & academia participated

Hack@DAC2018: Overview

• Deep dive into hardware bugs and detection techniques

• A RISC-V SoC testbed with injected bugs constructed in
collaboration with Intel hardware security professionals

• 54 teams from industry & academia participated

• Own investigation of the effectiveness of approaches used

Systematic RTL Bugs Construction

Memory bus & SoC
interconnect

Peripherals and
protected registers

Cryptography engines

Core privilege
escalation

Boot ROM

Debug and JTAG
interfaces

denial-of-service

privilege escalation

sensitive

information leakage

software

exploitability

https://github.com/hackdac/hackdac_2018_beta

Dive In

RISC-V SoC: RTL Bugs Testbed

2 RISC-V SoCs used: PULPino & PULPissimo

AXI = Advanced

Extensible Interface

SPI = Serial Peripheral

Interface

DMA = Direct Memory

Access

CLK = Real-Time Clock

HWPE = Hardware

Processing Elements

GPIO = General

Purpose I/O

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART

APB (Advanced Peripheral Bus)

Tightly Coupled Data Memory Interconnect

SPI

Master

Camera

Interface

I2C

Cache

Crypto

Core

Power

MGMT

Control

Temp

Sensor

to AXI

interconnect

Debug

DMA

RISC-V SoC: RTL Bugs Testbed

2 RISC-V SoCs used: PULPino & PULPissimo

AXI = Advanced

Extensible Interface

SPI = Serial Peripheral

Interface

DMA = Direct Memory

Access

CLK = Real-Time Clock

HWPE = Hardware

Processing Elements

GPIO = General

Purpose I/O

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART

APB (Advanced Peripheral Bus)

Tightly Coupled Data Memory Interconnect

SPI

Master

Camera

Interface

I2C

Cache

Crypto

Core

Power

MGMT

Control

Temp

Sensor

to AXI

interconnect

Debug

DMA

Example of Injected Bugs

2 RISC-V SoCs used: PULPino & PULPissimo

AXI = Advanced

Extensible Interface

SPI = Serial Peripheral

Interface

DMA = Direct Memory

Access

CLK = Real-Time Clock

HWPE = Hardware

Processing Elements

GPIO = General

Purpose I/O

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART

APB (Advanced Peripheral Bus)

Tightly Coupled Data Memory Interconnect

SPI

Master

Camera

Interface

I2C

Cache

Crypto

Core

Power

MGMT

Control

Temp

Sensor

to AXI

interconnect

Debug

DMA

Example of Injected Bugs

2 RISC-V SoCs used: PULPino & PULPissimo

AXI = Advanced

Extensible Interface

SPI = Serial Peripheral

Interface

DMA = Direct Memory

Access

CLK = Real-Time Clock

HWPE = Hardware

Processing Elements

GPIO = General

Purpose I/O

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART

APB (Advanced Peripheral Bus)

Tightly Coupled Data Memory Interconnect

SPI

Master

Camera

Interface

I2C

Cache

Crypto

Core

Power

MGMT

Control

Temp

Sensor

to AXI

interconnect

Debug

DMA

Bug #8

Type: memory access violation

Cause: Memory address range overlap between

the SPI master peripheral and the SoC control

peripheral

Effect: allows untrusted SPI peripheral to access a

more privileged SoC control peripheral

Inspiring CVEs: CVE-2018-12206 / CVE-2017-5704

/ CVE-2019-6260 / CVE-2018-8933

Example of Injected Bugs

2 RISC-V SoCs used: PULPino & PULPissimo

AXI = Advanced

Extensible Interface

SPI = Serial Peripheral

Interface

DMA = Direct Memory

Access

CLK = Real-Time Clock

HWPE = Hardware

Processing Elements

GPIO = General

Purpose I/O

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART

APB (Advanced Peripheral Bus)

Tightly Coupled Data Memory Interconnect

SPI

Master

Camera

Interface

I2C

Cache

Crypto

Core

Power

MGMT

Control

Temp

Sensor

to AXI

interconnect

Debug

DMA

Bug #8

Type: memory access violation

Cause: Memory address range overlap between

the SPI master peripheral and the SoC control

peripheral

Effect: allows untrusted SPI peripheral to access a

more privileged SoC control peripheral

Inspiring CVEs: CVE-2018-12206 / CVE-2017-5704

/ CVE-2019-6260 / CVE-2018-8933

Detection: requires dedicated support for complex

bus protocol semantics, too many modules involved

Example of Injected Bugs

2 RISC-V SoCs used: PULPino & PULPissimo

AXI = Advanced

Extensible Interface

SPI = Serial Peripheral

Interface

DMA = Direct Memory

Access

CLK = Real-Time Clock

HWPE = Hardware

Processing Elements

GPIO = General

Purpose I/O

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART

APB (Advanced Peripheral Bus)

Tightly Coupled Data Memory Interconnect

SPI

Master

Camera

Interface

I2C

Cache

Crypto

Core

Power

MGMT

Control

Temp

Sensor

to AXI

interconnect

Debug

DMA

Bug #20

Type: sensitive information leakage

Cause: AES engine stores key in a memory

address that is determined by the firmware

at runtime

Effect: attacker can leak the key from

memory if it is within unprotected range

Inspiring CVEs: CVE-2018-8933 / CVE-2014-

0881 / CVE-2017-5704

Example of Injected Bugs

2 RISC-V SoCs used: PULPino & PULPissimo

AXI = Advanced

Extensible Interface

SPI = Serial Peripheral

Interface

DMA = Direct Memory

Access

CLK = Real-Time Clock

HWPE = Hardware

Processing Elements

GPIO = General

Purpose I/O

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART

APB (Advanced Peripheral Bus)

Tightly Coupled Data Memory Interconnect

SPI

Master

Camera

Interface

I2C

Cache

Crypto

Core

Power

MGMT

Control

Temp

Sensor

to AXI

interconnect

Debug

DMA

Bug #20

Type: sensitive information leakage

Cause: AES engine stores key in a memory

address that is determined by the firmware

at runtime

Effect: attacker can leak the key from

memory if it is within unprotected range

Inspiring CVEs: CVE-2018-8933 / CVE-2014-

0881 / CVE-2017-5704

Detection: requires co-verification of

both hardware RTL and firmware, not

easily supported in existing tools

Software-Exploitable Bug

2 RISC-V SoCs used: PULPino & PULPissimo

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART

APB (Advanced Peripheral Bus)

Tightly Coupled Data Memory Interconnect

SPI

Master

Camera

Interface

I2C

Cache

DMA
Crypto

Core

Power

MGMT

Control

Temp

Sensor

to AXI

interconnect

Debug

Bug #7 Type: memory access violation

Cause: AXI bus address decoder finite state machine

(FSM) ignores memory access faults that occur in a

particular sequence

Inspiring CVEs: CVE-2018-4850

AXI = Advanced

Extensible Interface

SPI = Serial Peripheral

Interface

DMA = Direct Memory

Access

CLK = Real-Time Clock

HWPE = Hardware

Processing Elements

GPIO = General

Purpose I/O

Software-Exploitable Bug

2 RISC-V SoCs used: PULPino & PULPissimo

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART

APB (Advanced Peripheral Bus)

Tightly Coupled Data Memory Interconnect

SPI

Master

Camera

Interface

I2C

Cache

DMA
Crypto

Core

Power

MGMT

Control

Temp

Sensor

to AXI

interconnect

Debug

Bug #7 Type: memory access violation

Cause: AXI bus address decoder finite state machine

(FSM) ignores memory access faults that occur in a

particular sequence

Inspiring CVEs: CVE-2018-4850

Effect:

• Usually operates normally

• However, a “faulty” transaction on the memory bus

(e.g., disallowed memory access) causes subsequent

transaction to slip the check and be “operational”

unconditionally

• Trigger malicious memory access/privilege

escalation

AXI = Advanced

Extensible Interface

SPI = Serial Peripheral

Interface

DMA = Direct Memory

Access

CLK = Real-Time Clock

HWPE = Hardware

Processing Elements

GPIO = General

Purpose I/O

Software Exploit Explained

2 RISC-V SoCs used: PULPino & PULPissimo

AXI = Advanced

Extensible Interface

SPI = Serial Peripheral

Interface

DMA = Direct Memory

Access

CLK = Real-Time Clock

HWPE = Hardware

Processing Elements

GPIO = General

Purpose I/O

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART

APB (Advanced Peripheral Bus)

Tightly Coupled Data Memory Interconnect

SPI

Master

Camera

Interface

I2C

Cache

DMA
Crypto

Core

Power

MGMT

Control

Temp

Sensor

to AXI

interconnect

Debug

CORE CORE

CORE CORE

Last-Level Cache

Clock Management

HWPE

GPIO

AXI Memory

Interconnect

DEBUG RAM UART

Software Exploit Explained
Abstracted SoC to simplify!

CORE CORE

CORE CORE

Last-Level Cache

Clock Management

HWPE

GPIO

AXI Memory

Interconnect

DEBUG RAM UART

Software Exploit Explained

CORE CORE

CORE CORE

Last-Level Cache

Clock Management

HWPE

GPIO

AXI Memory

Interconnect

DEBUG RAM UART

Software Exploit Explained

Memory access requests

are usually sanitized by the

page table walker in the

CPU core and at the AXI

memory interconnect to

check whether the

memory access is allowed.

CORE CORE

CORE CORE

Last-Level Cache

Clock Management

HWPE

GPIO

AXI Memory

Interconnect

DEBUG RAM UART

Software Exploit Explained

CORE CORE

CORE CORE

Last-Level Cache

Clock Management

HWPE

GPIO

AXI Memory

Interconnect

Interrupt

DEBUG RAM UART

Software Exploit Explained

If a faulty/illegal access

is detected, an interrupt

is generated (even with

the injected bug).

RAM

CORE CORE

CORE CORE

Last-Level Cache

Clock Management

HWPE

GPIO

AXI Memory

Interconnect

DEBUG UART

Software Exploit Explained

RAM

CORE CORE

CORE CORE

Last-Level Cache

Clock Management

HWPE

GPIO

AXI Memory

Interconnect

Interrupt

Resulting in faulty

(illegal) memory access.
DEBUG UART

Software Exploit Explained

The interconnect is still

processing a faulty

memory access request,

and another one comes in.

With this bug, the second

request slips through the

sanitization check and is

allowed to occur even if it

is illegal.

RAM

CORE CORE

CORE CORE

Last-Level Cache

Clock Management

HWPE

GPIO

AXI Memory

Interconnect

Interrupt

Resulting in faulty

(illegal) memory access.
DEBUG UART

Software Exploit Explained

The interconnect is still

processing a faulty

memory access request,

and another one comes in.

With this bug, the second

request slips through the

sanitization check and is

allowed to occur even if it

is illegal.

RAM

CORE CORE

CORE CORE

Last-Level Cache

Clock Management

HWPE

GPIO

AXI Memory

Interconnect

DEBUG UART

Software Exploit Explained

RAM

CORE CORE

CORE CORE

Last-Level Cache

Clock Management

HWPE

GPIO

AXI Memory

Interconnect

One malicious process

can compromise the

entire platform!

Attacker can

register an interrupt

handler and spam the

bus wtih faulty memory

accesses.

DEBUG UART

Software Exploit Explained

Eventually, a malicious

memory access will slip

through the checks and

is allowed.

Results and HardFails

Results and HardFails
Some bugs were very

difficult to detect

Results and HardFails
Some bugs were very

difficult to detect

Some bugs could not

be detected at all

Results and HardFails
Some bugs were very

difficult to detect

Some bugs could not

be detected at all

And some of the

teams detected

„native“ bugs not

injected by us!

Example of a “Native” Bug

2 RISC-V SoCs used: PULPino & PULPissimo

AXI = Advanced

Extensible Interface

SPI = Serial Peripheral

Interface

DMA = Direct Memory

Access

CLK = Real-Time Clock

HWPE = Hardware

Processing Elements

GPIO = General

Purpose I/O

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART

APB (Advanced Peripheral Bus)

Tightly Coupled Data Memory Interconnect

SPI

Master

Camera

Interface

I2C

Cache

DMA
Crypto

Core

Power

MGMT

Control

Temp

Sensor

to AXI

interconnect

Debug

Bug #15

Type: incorrect computation

Cause: faulty logic in the real-time clock

causing inaccurate time calculation

Effect: can violate the integrity of security-

critical flows, e.g., Digital Rights

Management and certificate revocation

Similar to CVE-2018-4853

Study I: Competition Setup

• Phase I:
• preliminary qualification where 54 teams participated world-wide over 12

weeks to detect the bugs

• Pulpino SoC

Study I: Competition Setup

• Phase I:
• preliminary qualification where 54 teams participated world-wide over 12

weeks to detect the bugs

• Pulpino SoC

• Phase II:
• on-site final competition at DAC over an 8-hour time-frame

• More complex PULPissimo SoC  enabled injection of more advanced
bugs

Study I: Competition Setup

• Phase I:
• preliminary qualification where 54 teams participated world-wide over 12

weeks to detect the bugs

• Pulpino SoC

• Phase II:
• on-site final competition at DAC over an 8-hour time-frame

• More complex PULPissimo SoC  enabled injection of more advanced
bugs

• SoCs used are not toy examples yet not overly complex SoC
designs for the teams to work with

Methods & Techniques Used by Teams

54 teams participated worldwide over 12 weeks to detect the bugs

Manual
Inspection

Dynamic
Verification

Formal
Verification

Methods & Techniques Used by Teams

54 teams participated worldwide over 12 weeks to detect the bugs

Manual
Inspection

• Most popular
approach

• Prioritized high-
risk areas

• Does not scale to
cross-layer &
complex bugs

• Relies strongly on
human expertise

Dynamic
Verification

Formal
Verification

Methods & Techniques Used by Teams

54 teams participated worldwide over 12 weeks to detect the bugs

Manual
Inspection

• Most popular
approach

• Prioritized high-
risk areas

• Does not scale to
cross-layer &
complex bugs

• Relies strongly on
human expertise

Dynamic
Verification

• Assertion-based
simulation using
SystemVerilog

• Software-based
testing: running C
code to try and
trigger memory
accesses to
privileged
memory

Formal
Verification

Methods & Techniques Used by Teams

54 teams participated worldwide over 12 weeks to detect the bugs

Manual
Inspection

• Most popular
approach

• Prioritized high-
risk areas

• Does not scale to
cross-layer &
complex bugs

• Relies strongly on
human expertise

Dynamic
Verification

• Assertion-based
simulation using
SystemVerilog

• Software-based
testing: running C
code to try and
trigger memory
accesses to
privileged
memory

Formal
Verification

• Tried but failed

• Limited
scalability

• Extensive
expertise & time
required to use
the tools

Students

• Rahul Kande (Ph.D)

• Chen Chen (Ph.D)

• Georges Alsankary (Ph.D)

• Bhagyaraja Adapa (Ph.D)

• Garrett Persyn (Grad)

• Ghada Dessousky (Ph.D)

• Pouya Mahmoody (Ph.D)

