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Hack@DAC2018: Overview

• Deep dive into hardware bugs and detection techniques

• A RISC-V SoC testbed with injected bugs constructed in 
collaboration with Intel hardware security professionals

• 54 teams from industry & academia participated

• Own investigation of the effectiveness of approaches used
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Bug #8

Type: memory access violation

Cause: Memory address range overlap between 

the SPI master peripheral and the SoC control 

peripheral

Effect: allows untrusted SPI peripheral to access a 

more privileged SoC control peripheral

Inspiring CVEs: CVE-2018-12206  / CVE-2017-5704 

/ CVE-2019-6260 / CVE-2018-8933
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Detection: requires dedicated support for complex 

bus protocol semantics, too many modules involved
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Inspiring CVEs: CVE-2018-8933 / CVE-2014-
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Bug #20

Type: sensitive information leakage

Cause: AES engine stores key in a memory 

address that is determined by the firmware 

at runtime

Effect: attacker can leak the key from 

memory if it is within unprotected range

Inspiring CVEs: CVE-2018-8933 / CVE-2014-

0881 / CVE-2017-5704

Detection: requires co-verification of 

both hardware RTL and firmware, not 

easily supported in existing tools



Software-Exploitable Bug
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Cause: AXI bus address decoder finite state machine 

(FSM) ignores memory access faults that occur in a 
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Effect: 
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Software Exploit Explained
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entire platform!

Attacker can

register an interrupt 

handler and spam the 
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Results and HardFails
Some bugs were very 

difficult to detect

Some bugs could not 

be detected at all

And some of the 

teams detected 

„native“ bugs not 

injected by us!
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Type: incorrect computation

Cause: faulty logic in the real-time clock 

causing inaccurate time calculation

Effect: can violate the integrity of security-

critical flows, e.g., Digital Rights 

Management and certificate revocation

Similar to CVE-2018-4853
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Study I: Competition Setup

• Phase I: 
• preliminary qualification where 54 teams participated world-wide over 12 

weeks to detect the bugs

• Pulpino SoC

• Phase II: 
• on-site final competition at DAC over an 8-hour time-frame

• More complex PULPissimo SoC  enabled injection of more advanced 
bugs

• SoCs used are not toy examples yet not overly complex SoC 
designs for the teams to work with
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Methods & Techniques Used by Teams 

54 teams participated worldwide over 12 weeks to detect the bugs

Manual 
Inspection

• Most popular
approach

• Prioritized high-
risk areas

• Does not scale to 
cross-layer & 
complex bugs

• Relies strongly on 
human expertise

Dynamic 
Verification

• Assertion-based 
simulation using 
SystemVerilog

• Software-based 
testing: running C
code to try and 
trigger memory 
accesses to 
privileged 
memory

Formal 
Verification

• Tried but failed

• Limited 
scalability

• Extensive 
expertise & time 
required to use 
the tools
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