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Trusted Computing Goal: Self-Contained Security

Operating System

App 1 App 2 App 4App 3

Hardware

Software
Stack

Peripherals CPU I/OMemory   

• Isolated 
execution 

• Platform 
integrity

• Secure storage 

• Device 
identification

• Device 
authentication 
capabilities 



ARM TrustZone

TIMBER-V

Sanctuary

Trusted Computing Landscape 

Hardware-assisted 
secure boot

Trusted Platform 
Module (TPM)

Late launch/TXT

Java Card platform

Intel SGX

IBM CryptoCards

Sanctum

Bastion

AEGIS

TrustLite

TyTAN

Sancus

Keystone

Hex Five
MultiZoneSMART

HDFI

CHERI

CODOMs

IMIX

CURE
AMD SEV

Intel TDX

Iso-X



ARM TrustZone

TIMBER-V

Sanctuary

Trusted Computing Landscape 

Hardware-assisted 
secure boot

Trusted Platform 
Module (TPM)

Late launch/TXT

Java Card platform

Intel SGX

IBM CryptoCards

Sanctum

Bastion

AEGIS

TrustLite

TyTAN

Sancus

Keystone

Hex Five
MultiZoneSMART

HDFI

CHERI

CODOMs

IMIX

CURE
AMD SEV

Intel TDX

Iso-X



ARM TrustZone

TIMBER-V

Sanctuary

Trusted Computing Landscape 

Hardware-assisted 
secure boot

Trusted Platform 
Module (TPM)

Late launch/TXT

Java Card platform

Intel SGX

IBM CryptoCards

Sanctum

Bastion

AEGIS

TrustLite

TyTAN

Sancus

Mobile & Embedded

Keystone

Hex Five
MultiZoneSMART

HDFI

CHERI

CODOMs

IMIX

CURE
AMD SEV

Intel TDX

Iso-X



ARM TrustZone

TIMBER-V

Sanctuary

Trusted Computing Landscape 

Hardware-assisted 
secure boot

Trusted Platform 
Module (TPM)

Late launch/TXT

Java Card platform

Intel SGX

IBM CryptoCards

Sanctum

Bastion

AEGIS

TrustLite

TyTAN

Sancus

Mobile & Embedded

Isolated Execution Environment

Keystone

Hex Five
MultiZoneSMART

HDFI

CHERI

CODOMs

IMIX

CURE
AMD SEV

Intel TDX

Iso-X



ARM TrustZone

TIMBER-V

Sanctuary

Trusted Computing Landscape 

Hardware-assisted 
secure boot

Trusted Platform 
Module (TPM)

Late launch/TXT

Java Card platform

Intel SGX

IBM CryptoCards

Sanctum

Bastion

AEGIS

TrustLite

TyTAN

Sancus

Mobile & Embedded

Isolated Execution Environment

Keystone

Hex Five
MultiZoneSMART

HDFI

CHERI

CODOMs

IMIX

Capability
System

CURE
AMD SEV

Intel TDX

Iso-X



ARM TrustZone

TIMBER-V

Sanctuary

Trusted Computing Landscape 

Hardware-assisted 
secure boot

Trusted Platform 
Module (TPM)

Late launch/TXT

Java Card platform

Intel SGX

IBM CryptoCards

Sanctum

Bastion

AEGIS

TrustLite

TyTAN

Sancus

Mobile & Embedded

Isolated Execution Environment

Keystone

Hex Five
MultiZone

Deployed

SMART

HDFI

CHERI

CODOMs

IMIX

Capability
System

CURE
AMD SEV

Intel TDX

Iso-X



ARM TrustZone

TIMBER-V

Sanctuary

Trusted Computing Landscape 

Hardware-assisted 
secure boot

Trusted Platform 
Module (TPM)

Late launch/TXT

Java Card platform

Intel SGX

IBM CryptoCards

Sanctum

Bastion

AEGIS

TrustLite

TyTAN

Sancus

Mobile & Embedded

Isolated Execution Environment

Keystone

Hex Five
MultiZone

RISC-V

Deployed

SMART

HDFI

CHERI

CODOMs

IMIX

Capability
System

CURE
AMD SEV

Intel TDX

Iso-X



ARM TrustZone

TIMBER-V

Sanctuary

Trusted Computing Landscape 

Hardware-assisted 
secure boot

Trusted Platform 
Module (TPM)

Late launch/TXT

Java Card platform

Intel SGX

IBM CryptoCards

Sanctum

Bastion

AEGIS

TrustLite

TyTAN

Sancus

Mobile & Embedded

Isolated Execution Environment

Keystone

Hex Five
MultiZone

RISC-V
Software Side-Channel Protection

Deployed

SMART

HDFI

CHERI

CODOMs

IMIX

Capability
System

CURE
AMD SEV

Intel TDX

Iso-X



Example: Intel SGX



Intel Software Guard Extensions (SGX)

Operating System

App 1 App 2 App 4App 3

Hardware

Software
Stack

Peripherals CPU I/OMemory

Enclave 4Enclave 3Enclave 2Enclave 1

Assumptions: All software, and some hardware components, can be untrusted



Information Leakage



Real-World Consequences

Extracting 2048-bit RSA 
decryption key from the enclave

Extracting genome sequences 
from the enclave
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Towards Resilient 
Enclave-based Security Architectures 



• Multiple types of enclaves

• Security-critical tasks and services (e.g., 
remote attestation) managed by trusted 
software component (SM)

• Way-based cache partitioning on shared L2 
cache

• Novel access control mechanism on system  
bus, minimal changes at processor

• Allows for secure binding between enclaves 
and peripherals

CURE: A Security Architecture 
with CUstomizable and Resilient Enclaves

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, 
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza Sadeghi, Emmanuel Stapf at USENIX Security 2021



Deep Dive into Hardware 
Vulnerabilities
International Hardware Security Capture-The-Flag 
Competition, HACK@ Franchise 



Hack@DAC: Why and How?

• Deep dive into real-world hardware security vulnerabilities and detection 
methodologies

• Raise the bar for hardware security in the semiconductor industry
• Lots of established techniques for software security assurance
• But limited number of tools for hardware security assurance

• RISC-V SoC testbeds with injected bugs constructed in collaboration with 
Intel hardware security professionals

• Over the past 3 years: A total of 174 teams from academia and industry 
from all over the world

• Own investigation of the effectiveness of typical industry standard formal 
verification tools



Systematic RTL Bugs Construction
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Hack@DAC 2018 RISC-V SoC

2 RISC-V SoCs used: PULPino & PULPissimo

AXI = Advanced 

Extensible Interface

SPI = Serial Peripheral 

Interface

DMA = Direct Memory 

Access

CLK = Real-Time Clock         

HWPE = Hardware 

Processing Elements     

GPIO = General 

Purpose I/O

RISC-V

CORE
HWPE

Timer

JTAG

GPIO

I2S

AXIROM

CLK

UART
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Tightly Coupled Data Memory Interconnect

SPI 
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Camera 
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Crypto 
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Power 
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Control

Temp 

Sensor

to AXI 

interconnect

Debug
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More interesting insights and results from the teams
Increasing awareness and attention in academia and industry
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In the Press



Conclusion
• Trusted computing could not keep its promises

• Still suffering from legacy issues 
• The impact of side-channels and transient execution were “ignored” ?

• Hardware security validation is still its infacny

• Current tools and metrics for security are limited
• No fuzzing or symbolic execution for RTL code
• Significant expertise, explicit definition of security property assertions and manual inspection required 
• Scalability and consolidated hardware/firmware verification are open challenges

• Real-world systems are highly proprietary
• False sense of security („by-obscurity“)
• Open-source hardware such as RISC-V may help, like Linux in software

• Customizable security architecture may be more successful towards more resilient computing 
platforms (see CURE, Bahmani et al USENIX SEC 2021)



What’s Next for Hack@DAC?

• Hack@DAC goes to the cloud – Amazon’s AWS FPGA 
instances to host the SoCs and open-source security 
assurance tools

• A learning hub on hardware security assurance for 
academia & industry

• Developing new effective & efficient hardware security 
assurance techniques, e.g. hardware fuzzing 
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