In Hardware We Trust:
Enriching the World with Hardware
Security

Ahmad-Reza Sadeghi

Technical University of Darmstadt

Trusted Computing Goal: Self-Contained Security

* Isolated
execution

* Platform
integrity
* Secure storage

* Device
identification

* Device
authentication
capabilities

Software

Trusted Computing Landscape

HDFI Iso-X
o Basti IBM CryptoCards
CHERI astion Keystone Late launch/TXT
Sanctum :
Hardware-assisted
CODOMs AEGIS secure boot AMD SEV
CURE Intel SGX Trusted Platform
IMIX Sanctuary ARM TrustZone Module (TPM)
- Hex Five
SMART TyTAN TIMBER-V MultiZone Java Card platform
TrustLite Sancus

Intel TDX

Trusted Computing Landscape

()
ge™
o)
pe Z,
HDFI |so-X S
o Basti IBM CryptoCards
CHERI astion Keystone Late launch/TXT
Sanctum -
CODOM:ss AEGIS SH:CrS;"e’abrs;SS'Sted AMD SEV
CURE Intel SGX Trusted Platform
IMIX Sanctuary ARM TrustZone Module (TPM)
TIMBER-V Hex Five
SMART U MultiZone Java Card platform
TrustLite Sancus

Intel TDX

Trusted Computing Landscape

0
3e™
peo &
HDFI |so-X S
oF Basti IBM CryptoCards
CHERI astion Keystone Late launch/TXT
Sanctum :
Hardware-assisted
CODOMs AEGIS cecurd boot AMD SEV
CURE Intel SGX Trusted Platform
U " ARM TrustZone Module (TPM)
TIMBER-V Hex Five

SMART UL MultiZone Java Card platform
TrustLite Sancus
Intel TDX

Mobile & Embedded

Trusted Computing Landscape

Isolated Execution Environment

CODOMs

IMIX

= %

Mobile & Embedded

Trusted Computing Landscape

Isolated Execution Environment

3™

Capab\ity.
SystemNg

= %

Mobile & Embedded

Trusted Computing Landscape

Isolated Execution Environment Deployed

3™

Capab\ity.
SystemNg

\ e

Mobile & Embedded

Trusted Computing Landscape

Isolated Execution Environment Deployed

3™

Capab\ity.
SystemNg

\ e

Mobile & Embedded

Trusted Computing Landscape

Isolated Execution Environment

Deployed

3™

it are Side-Ch

>

0

Capab\ity.
SystemNg

= >

Mobile & Embedded

Example: Intel SGX

Intel Software Guard Extensions (SGX)

Assumptions: All software, and some hardware components, can be untrusted

L
Software - *
7S g %S

Stack

| ofle | | ofle |

Information Leakage

Real-World Consequences

Extracting 2048-bit RSA Extracting genome sequences
decryption key from the enclave from the enclave

W LGACTGAGGC LA AL
ACTGACTGAGGAGCTCACCTCCCACATCTG A
L AAAGAAATAAGATTAAACCAAGAAAAGGAAGCTGAAAACC TG
\GAGAGAAGGAAGCTAAGAAAGAGAAGA” -~ NF£3 - - T MAAACCCTGC
GCCTACTACCAGGAGTGCAGACGGAAT? > SCTGATTATCC
- ACCAGTAAGTGCAGCTGGTTCCTGGAGG' WAGAAGGG - " \aancancrrc
“TAACCAGGCTAGCTATGTGGCTTTCCTGE , 11 . STGCTAACCTTAL
AGATGAGGAGAGAGGAGCTATGGAGAGTCA' AGTG AAGT

A TG‘\TGTT AGCAGCTGCAGACCAG

The Rise & Hype of Cross-Layer Exploits

* Recent microarchitectural/hardware-based attacks are exploiting
issues that originate in the underlying hardware/microarchitecture

Meltdown
Spectre

Zombieload
Foreshadow

Fallout o}
(»

SPECTRE

CLKScrew

RIDL TLBleed

Rowhammer

Spoiler
CacheBleed

P
)
\/% Platypus

| \\\\ ’

MELTDOWN

The Rise & Hype of Cross-Layer Exploits

* Recent microarchitectural/hardware-based attacks are exploiting
issues that originate in the underlying hardware/microarchitecture

Spectre

Zo? O
Foreshadow \Na(e Cot” \
ward 30>

Fallout o
OL' %’

r 4
el ? o

Towards Resilient
Enclave-based Security Architectures

CURE: A Security Architecture
with CUstomizable and Resilient Enclaves

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza Sadeghi, Emmanuel Stapf at USENIX Security 2021

at different privilege levels can be supported. o M u |t| p | e types Of e nC|aveS
FR.2: Enclave-to-peripheral binding. Secure communica-
tion between encl and m.luu.d ystem peripherals, e.g.,

* Security-critical tasks and services (e.g.,
R ey e _ remote attestation) managed by trusted
commodity :SOC _(_«'.‘T. Section 2) must bt_: minimal, no i : . SOftwa re Component (SM)

changes to CPU internals must be required to enable a higher
adoption of CURE in future platforms.

FR.4: Reasonable performance overhead. The perfor-
mance overhead incurred during enclave setup and run time
must be minimized and must not render the computer system

Software

* Way-based cache partitioning on shared L2
cache

Q
—
m
2
e
[}
T

n mechanisms. Protection

pllulhlt‘. num]ml])- at run time and on a per-enclave basis. PY N OVEl access co ntr0| m ECh an is m on SySte m
5 Design of the CURE Architecture O Eenclave SM: Security Monitor bUS m | n | mal Cha nges at processor
RT: Runtime)

[0 Trusted Software Component
CURE provides a novel design that addresses the require-
ments described above and p s a TEE architecture with

strongly-isolated and highly customizable enclaves, which > enclaves (E ernel-space enclaves (Encly, » Allows for secure binding between enclaves
can be d.d'lp[t‘d to the lEL]LlllEITIEI‘JI\ (sf the services they protect. ° o i "
c and peripherals

gure 2: CURE pn\l]:‘ue levels and enclave types, namely,

'1\-'6-[_\ pe, CURE cl”t_]“h to freel) det‘me ele\»e bound-
;md th iffere.nt enclaves anb structed, as shown
1, we duulhx ll‘n ecosysle

+

| ¢ | g | ‘ ' . ;
’ | ; _.

|

|

B | ~ |
y ~ N ’ ‘
: | |
! :
| i l
'\ | | %

Deep Dive,

Vulnerabil

International Hardw "':'/Securlty Cbpture-The Flag
Competition, HACK@ Franchise—- ~

Hack@DAC: Why and How?

* Deep dive into real-world hardware security vulnerabilities and detection
methodologies

* Raise the bar for hardware security in the semiconductor industry
* Lots of established techniques for software security assurance
e But limited number of tools for hardware security assurance

* RISC-V SoC testbeds with injected bugs constructed in collaboration with
Intel hardware security professionals

* Over the past 3 years: A total of 174 teams from academia and industry
from all over the world

* Own investigation of the effectiveness of typical industry standard formal
verification tools

Systematic RTL Bugs Construction

V=

Spectrum of CVEs
involving SW-
exploitable
hardware and
firmware bugs

ritel.

Vinside
Real-world hardware
bugs encountered
by hardware and

system security
professionals at Intel

Systematic RTL Bugs Construction

Systematic RTL Bugs Construction

HaCk@ DAC 2018 RISC-V SoC interconnect

L D S |

AX| = Advanced
Extensible Interface

SPI = Serial Peripheral
Interface

DMA = Direct Memory
Access

CLK = Real-Time Clock

HWPE = Hardware
Processing Elements

GPIO = General
Purpose I/O

2 RISC-V SoCs used: PULPino & PULPissimo

Hack@DAC: Then and Now

https://hackat.events/dacl18/ https://hackat.events/dac19/

https://hackat.events/dac20/ https://hackat.events/sec20/

https://hackat.events/dac18/
https://hackat.events/dac19/
https://hackat.events/dac20/
https://hackat.events/sec20/

Hack@DAC: Then and Now

https://hackat.events/dacl18/ https://hackat.events/dac19/

https://hackat.events/dac20/ https://hackat.events/sec20/

https://hackat.events/dac18/
https://hackat.events/dac19/
https://hackat.events/dac20/
https://hackat.events/sec20/

Hack@DAC: Then and Now

Focus &
Scoring

https://hackat.events/dacl18/ https://hackat.events/dac19/

https://hackat.events/dac20/ https://hackat.events/sec20/

https://hackat.events/dac18/
https://hackat.events/dac19/
https://hackat.events/dac20/
https://hackat.events/sec20/

Hack@DAC: Then and Now

Focus &
Scoring

Complexity

https://hackat.events/dacl18/ https://hackat.events/dac19/

https://hackat.events/dac20/ https://hackat.events/sec20/

https://hackat.events/dac18/
https://hackat.events/dac19/
https://hackat.events/dac20/
https://hackat.events/sec20/

Hack@DAC: Then and Now

Focus &
Scoring

Complexity

Insights &
Awareness

https://hackat.events/dac18/
https://hackat.events/dac20/

https://hackat.events/dac19/

https://hackat.events/sec20/

174 teams in
total over the
3 years

https://hackat.events/dac18/
https://hackat.events/dac19/
https://hackat.events/dac20/
https://hackat.events/sec20/

DEVOPS

Seach.. B Why Do We Need a Standardized Framework
to Enumerate Hardware Security Weaknesses?

In the Press RE——

spEC!

Inte] Security @

ity @
~select Languad® intel Security &
o

i r Khattri .

Kanuparthi & H;leesi We Bt

' t rs @

Security Rese? i e | e
v fr d the world participate I ‘ P
HaCk@DAC‘TeamS ‘ nto p solutions fqr

dent #hackatnon e
“\z\e r?:':y'\ng weaknesses I buggy S°
‘ . “.‘. 1) V3

metl?ing new! A i h
Mpetition i ardware
g N Ions to @ -
| 3 o
E rjd Koen Koning from

hers Arun

earc)
£omOITOW s 7=

} w
\ Place Amsterdan,
=Y ¥
’ 4!
< \
oo | J
e [ﬁ;; g

Hany
Racas

Vanuace;

lIX Security Symposium '
honored to be 3 part of # X resa
Fung,

3rd
Place

: i, and Ghada Desso - Intel Security &
presenting on microarchitectural #secy;
o It's the 28th annual @L X Security Symposium and
we're excited for a presentation on the findings of three
Intel # y researchers. Get ready for a deep dive
into microarchitectural security — and congrats to Arun,
Hareesh, and Jason! bit 039H4H @ esec19

‘HardFails: Insights into Software-Exploitable
Hardware Bugs'

ﬁ usenix & 3
ASSOCIATION ' (/_D

Co-authored by Intel Security Researchers
Arun Kanuparthi, Hareesh Khattri & Jason M. Fung
Wednesday, August 14th 2019

Conclusion

Trusted computing could not keep its promises
 Still suffering from legacy issues
* The impact of side-channels and transient execution were “ignored” ?

Hardware security validation is still its infacny

Current tools and metrics for security are limited
* No fuzzing or symbolic execution for RTL code
» Significant expertise, explicit definition of security property assertions and manual inspection required
 Scalability and consolidated hardware/firmware verification are open challenges

Real-world systems are highly proprietary
* False sense of security (,,by-obscurity®)
* Open-source hardware such as RISC-V may help, like Linux in software

Customizable security architecture may be more successful towards more resilient computing
platforms (see CURE, Bahmani et al USENIX SEC 2021)

What’s Next for Hack@DAC?

* Hack@DAC goes to the cloud — Amazon’s AWS FPGA
instances to host the SoCs and open-source security
assurance tools

* A learning hub on hardware security assurance for
academia & industry

* Developing new effective & efficient hardware security
assurance techniques, e.g. hardware fuzzing

Contact us:
ahmad.sadeghi@trust.tu-darmstadt.de

