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Trusted Computing Goal: Self-Contained Security

* Isolated
execution

* Platform
integrity
* Secure storage

* Device
identification

* Device
authentication
capabilities

Software
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Trusted Computing Landscape

Isolated Execution Environment
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Trusted Computing Landscape

Isolated Execution Environment Deployed
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Example: Intel SGX




Intel Software Guard Extensions (SGX)

Assumptions: All software, and some hardware components, can be untrusted
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Information Leakage




Real-World Consequences

Extracting 2048-bit RSA Extracting genome sequences
decryption key from the enclave from the enclave
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The Rise & Hype of Cross-Layer Exploits

* Recent microarchitectural/hardware-based attacks are exploiting
issues that originate in the underlying hardware/microarchitecture
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The Rise & Hype of Cross-Layer Exploits

* Recent microarchitectural/hardware-based attacks are exploiting
issues that originate in the underlying hardware/microarchitecture
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Towards Resilient
Enclave-based Security Architectures



CURE: A Security Architecture
with CUstomizable and Resilient Enclaves

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza Sadeghi, Emmanuel Stapf at USENIX Security 2021

at different privilege levels can be supported. o M u |t| p | e types Of e nC|aveS
FR.2: Enclave-to-peripheral binding. Secure communica-
tion between encl and m.luu.d ystem peripherals, e.g.,

* Security-critical tasks and services (e.g.,
R ey e _ remote attestation) managed by trusted
commodity :SOC _(_«'.‘T. Section 2) must bt_: minimal, no i : . SOftwa re Component (SM)

changes to CPU internals must be required to enable a higher
adoption of CURE in future platforms.

FR.4: Reasonable performance overhead. The perfor-
mance overhead incurred during enclave setup and run time
must be minimized and must not render the computer system

Software

* Way-based cache partitioning on shared L2
cache
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Hack@DAC: Why and How?

* Deep dive into real-world hardware security vulnerabilities and detection
methodologies

* Raise the bar for hardware security in the semiconductor industry
* Lots of established techniques for software security assurance
e But limited number of tools for hardware security assurance

* RISC-V SoC testbeds with injected bugs constructed in collaboration with
Intel hardware security professionals

* Over the past 3 years: A total of 174 teams from academia and industry
from all over the world

* Own investigation of the effectiveness of typical industry standard formal
verification tools



Systematic RTL Bugs Construction

V=

Spectrum of CVEs
involving SW-
exploitable
hardware and
firmware bugs

ritel.

Vinside
Real-world hardware
bugs encountered
by hardware and

system security
professionals at Intel



Systematic RTL Bugs Construction
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HaCk@ DAC 2018 RISC-V SoC interconnect

L D S |

AX| = Advanced
Extensible Interface

SPI = Serial Peripheral
Interface

DMA = Direct Memory
Access

CLK = Real-Time Clock

HWPE = Hardware
Processing Elements

GPIO = General
Purpose I/O

2 RISC-V SoCs used: PULPino & PULPissimo




Hack@DAC: Then and Now

https://hackat.events/dacl18/ https://hackat.events/dac19/

https://hackat.events/dac20/ https://hackat.events/sec20/
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Hack@DAC: Then and Now

Focus &
Scoring
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Hack@DAC: Then and Now

Focus &
Scoring

Complexity
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Hack@DAC: Then and Now

Focus &
Scoring

Complexity

Insights &
Awareness
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174 teams in
total over the
3 years
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DEVOPS

Seach.. B Why Do We Need a Standardized Framework
to Enumerate Hardware Security Weaknesses?
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‘HardFails: Insights into Software-Exploitable
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Conclusion

Trusted computing could not keep its promises
 Still suffering from legacy issues
* The impact of side-channels and transient execution were “ignored” ?

Hardware security validation is still its infacny

Current tools and metrics for security are limited
* No fuzzing or symbolic execution for RTL code
» Significant expertise, explicit definition of security property assertions and manual inspection required
 Scalability and consolidated hardware/firmware verification are open challenges

Real-world systems are highly proprietary
* False sense of security (,,by-obscurity®)
* Open-source hardware such as RISC-V may help, like Linux in software

Customizable security architecture may be more successful towards more resilient computing
platforms (see CURE, Bahmani et al USENIX SEC 2021)



What’s Next for Hack@DAC?

* Hack@DAC goes to the cloud — Amazon’s AWS FPGA
instances to host the SoCs and open-source security
assurance tools

* A learning hub on hardware security assurance for
academia & industry

* Developing new effective & efficient hardware security
assurance techniques, e.g. hardware fuzzing



Contact us:
ahmad.sadeghi@trust.tu-darmstadt.de




