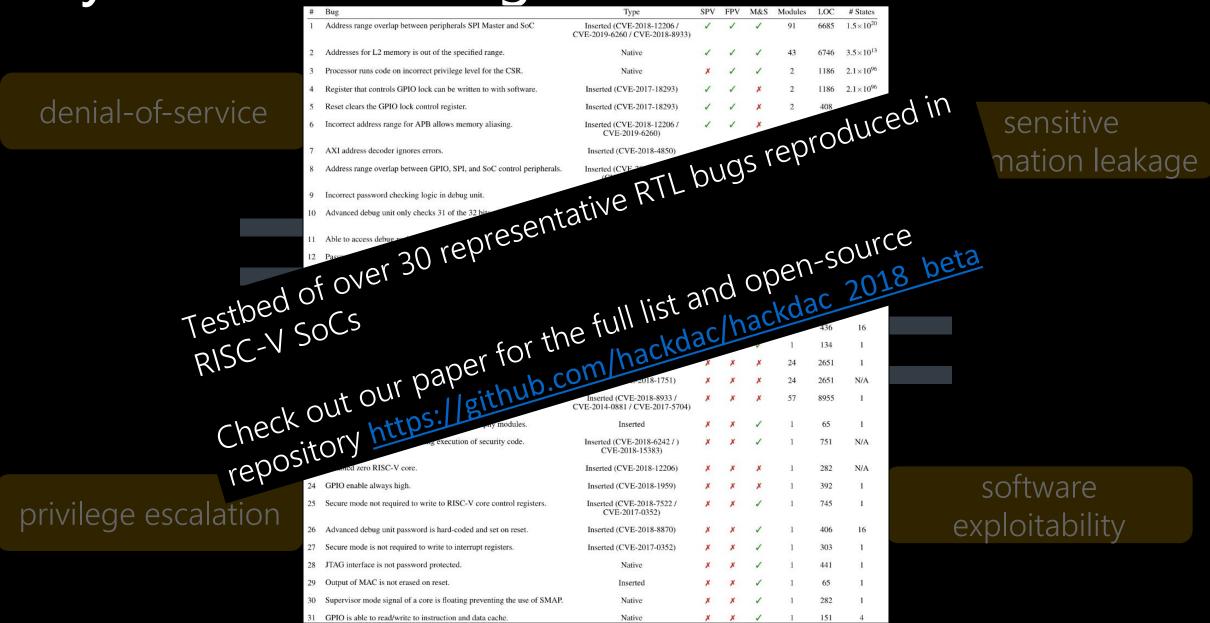

In Hardware We Trust Enriching the World with Hardware Security

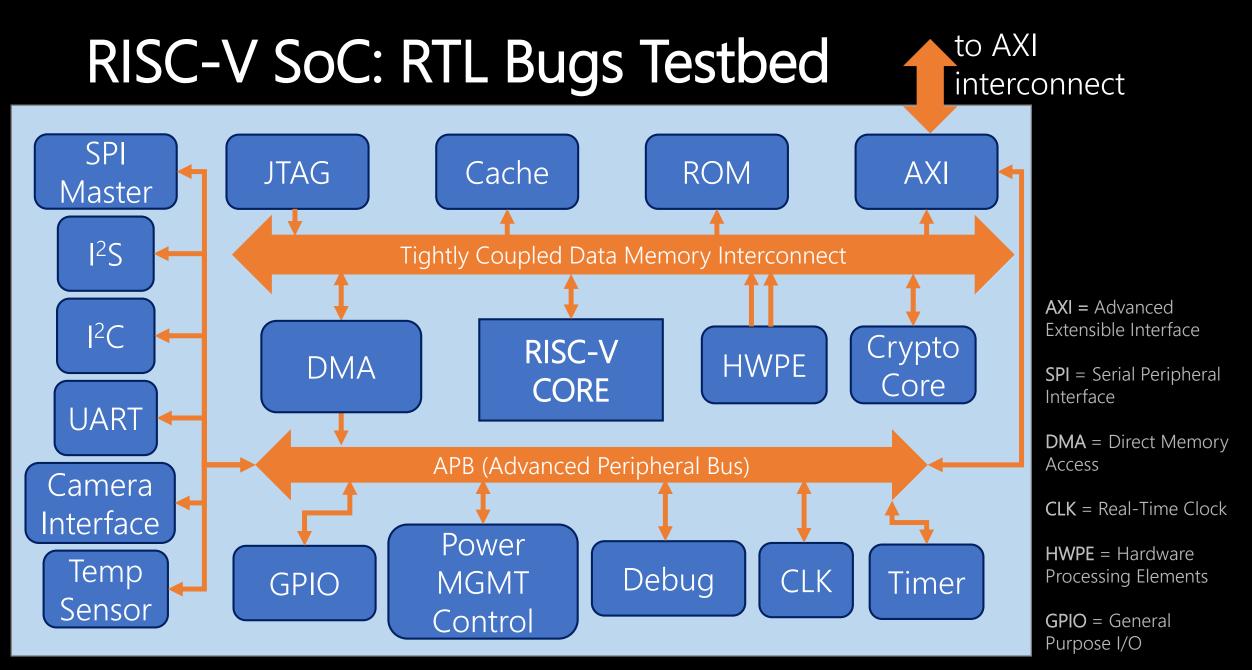
JV Rajendran Texas A&M University

Hack@DAC2018: Overview

• Deep dive into hardware bugs and detection techniques

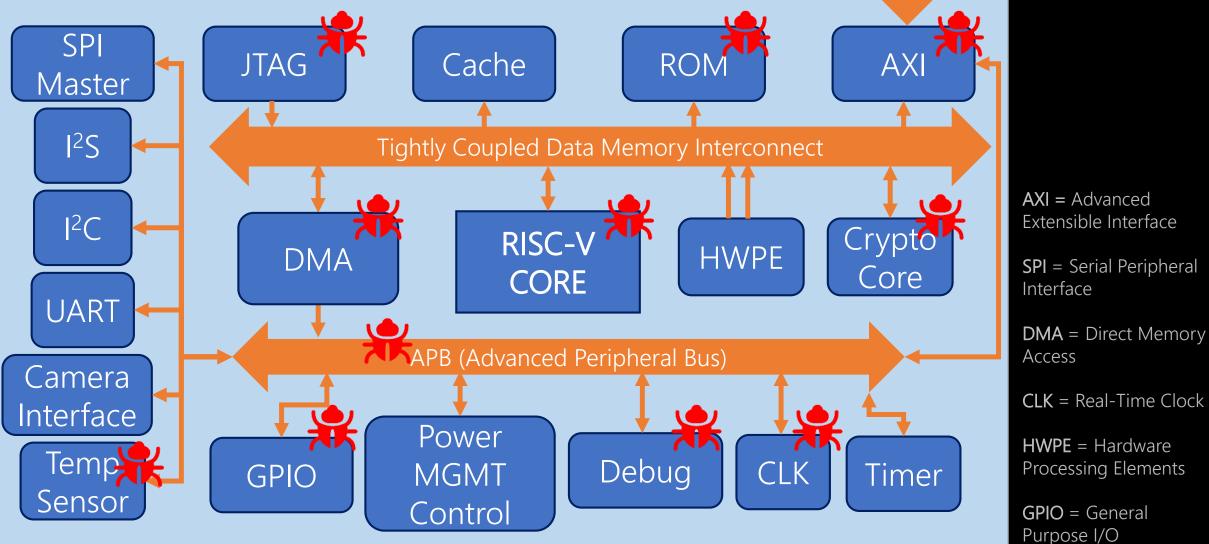

Hack@DAC2018: Overview

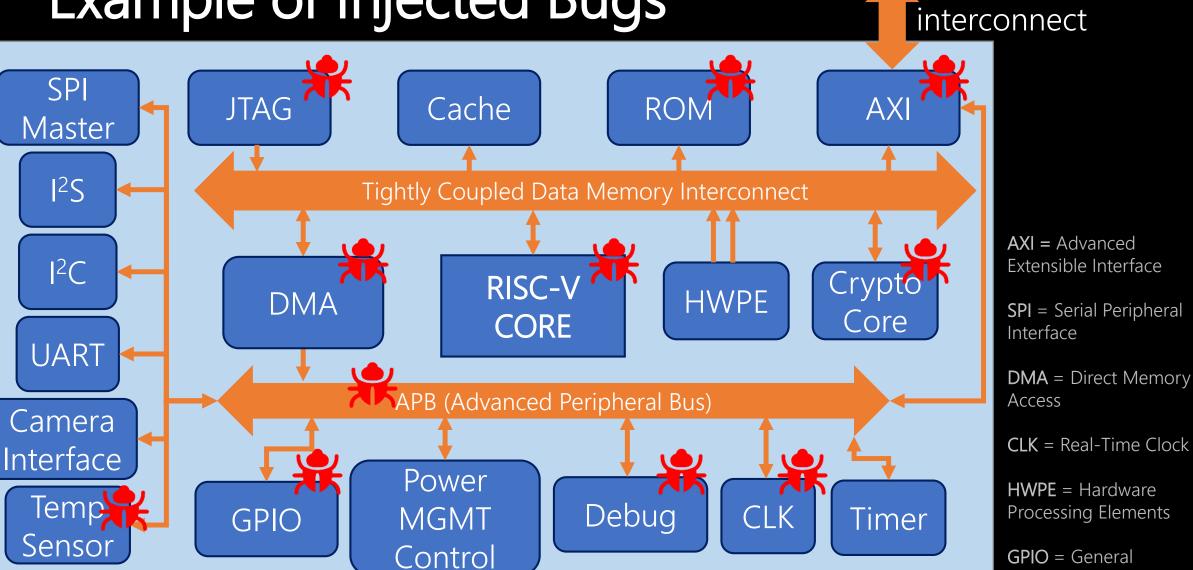
- Deep dive into hardware bugs and detection techniques
- A RISC-V SoC testbed with injected bugs constructed in collaboration with Intel hardware security professionals
- 54 teams from industry & academia participated


Hack@DAC2018: Overview

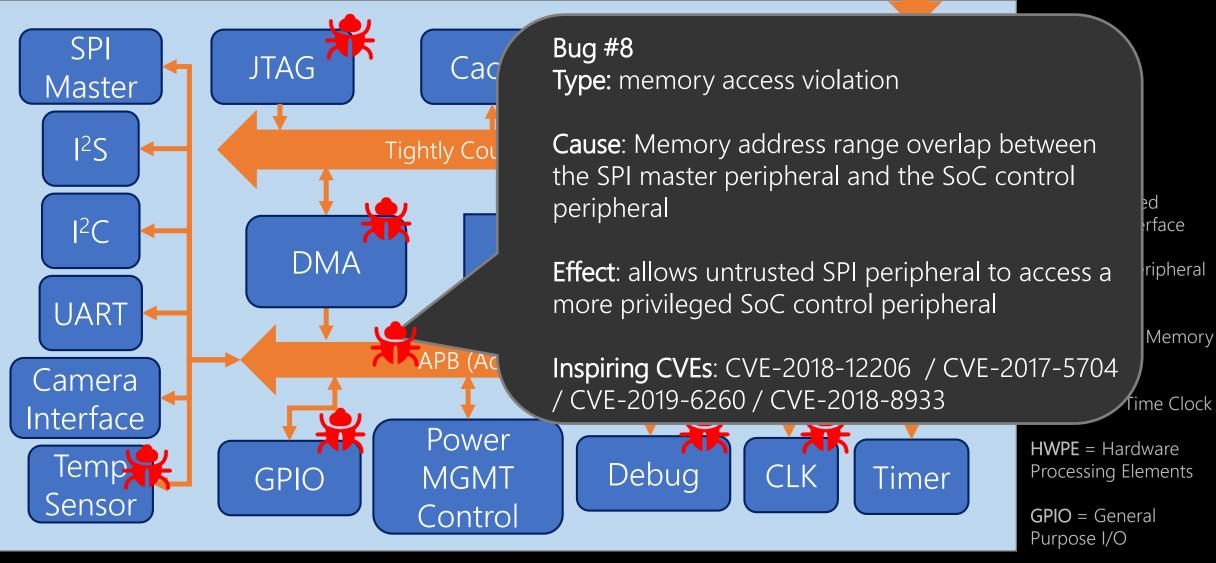
- Deep dive into hardware bugs and detection techniques
- A RISC-V SoC testbed with injected bugs constructed in collaboration with Intel hardware security professionals
- 54 teams from industry & academia participated
- Own investigation of the effectiveness of approaches used

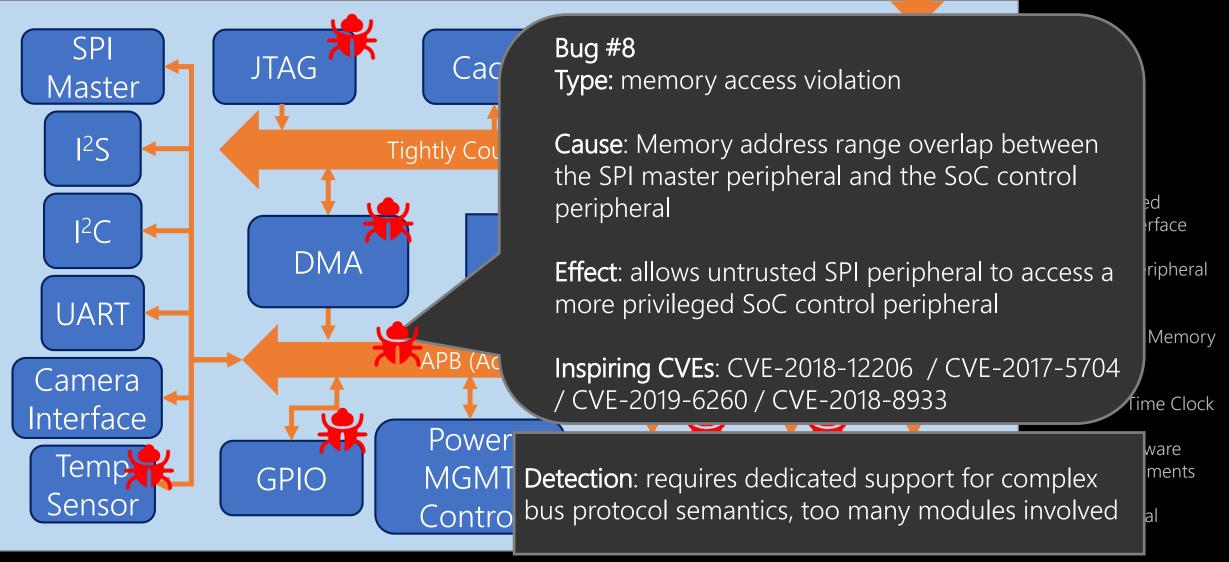
Systematic RTL Bugs Construction




Dive In

RISC-V SoC: RTL Bugs Testbed




to AXI

Purpose I/O

to AXI interconnect

to AXI interconnect

to AXI interconnect

Bug #20 Type: sensitive information leakage

Cause: AES engine stores key in a memory address that is determined by the firmware at runtime

Effect: attacker can leak the key from memory if it is within unprotected range

Inspiring CVEs: CVE-2018-8933 / CVE-2014-0881 / CVE-2017-5704

MGMT

Control

Timer

AX

AXI = Advanced Extensible Interface

SPI = Serial Peripheral Interface

DMA = Direct Memory Access

CLK = Real-Time Clock

HWPE = Hardware Processing Elements

GPIO = General Purpose I/O

2 RISC-V SoCs used: PULPino & PULPissimo

GPIO

SPI

Master

 $|^2S$

 $|^2C$

UART

Camera

Interface

lem

Sensor

SPI

Master

 $|^2S$

 $|^2C$

UART

Camera

Interface

lem

Sensor

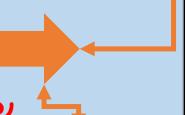
2 RISC-V SoCs used: PUL

GF

to AXI interconnect

Bug #20 Type: sensitive information leakage

Cause: AES engine stores key in a memory address that is determined by the firmware at runtime


Effect: attacker can leak the key from memory if it is within unprotected range

Inspiring CVEs: CVE-2018-8933 / CVE-2014-0881 / CVE-2017-5704

Detection: requires co-verification of both hardware RTL and firmware, not easily supported in existing tools

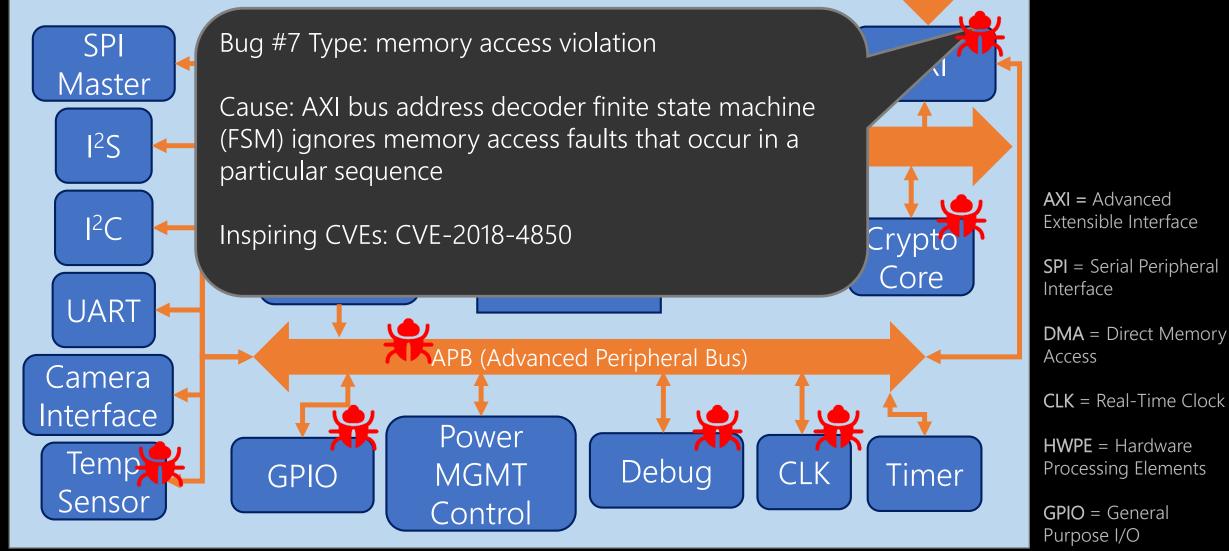
AX

Timer

AXI = Advanced Extensible Interface

SPI = Serial Peripheral Interface

DMA = Direct Memory Access


CLK = Real-Time Clock

HWPE = Hardware Processing Elements

GPIO = General Purpose I/O

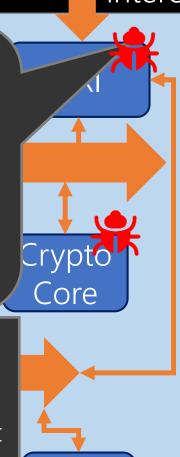
Software-Exploitable Bug

Software-Exploitable Bug

to AXI interconnect

SPI Master $|^2S$ $|^2C$ UART Camera Interface len Senso

Bug #7 Type: memory access violation


Cause: AXI bus address decoder finite state machine (FSM) ignores memory access faults that occur in a particular sequence

Inspiring CVEs: CVE-2018-4850

Effect:

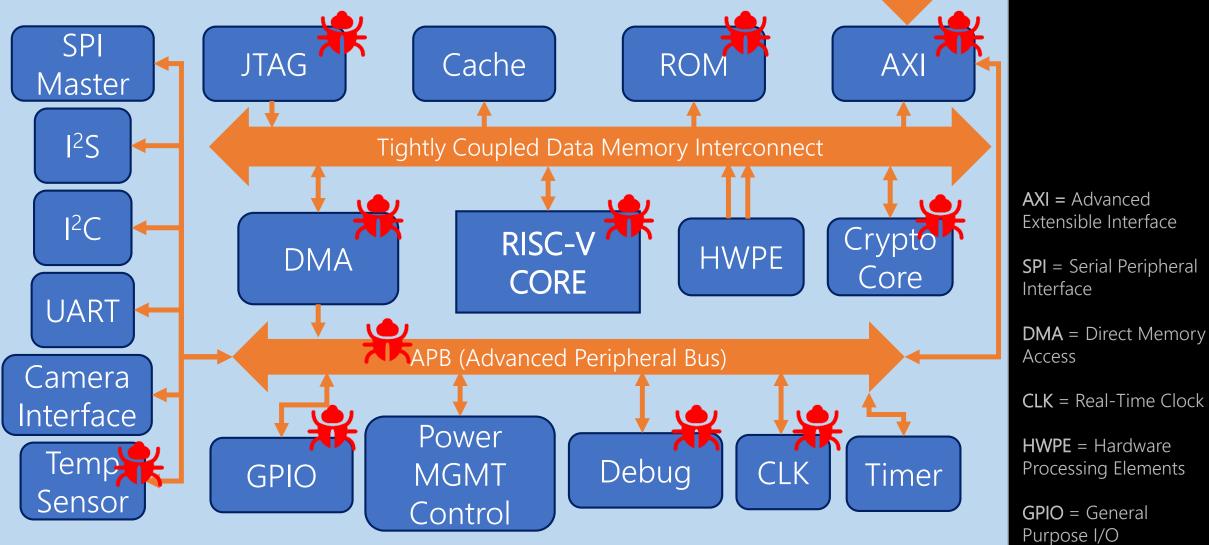
- Usually operates normally
- However, a "faulty" transaction on the memory bus (e.g., disallowed memory access) causes subsequent transaction to slip the check and be "operational" unconditionally
- Trigger malicious memory access/privilege escalation

2 RISC-V SoCs used: PULPino & PULPissimo

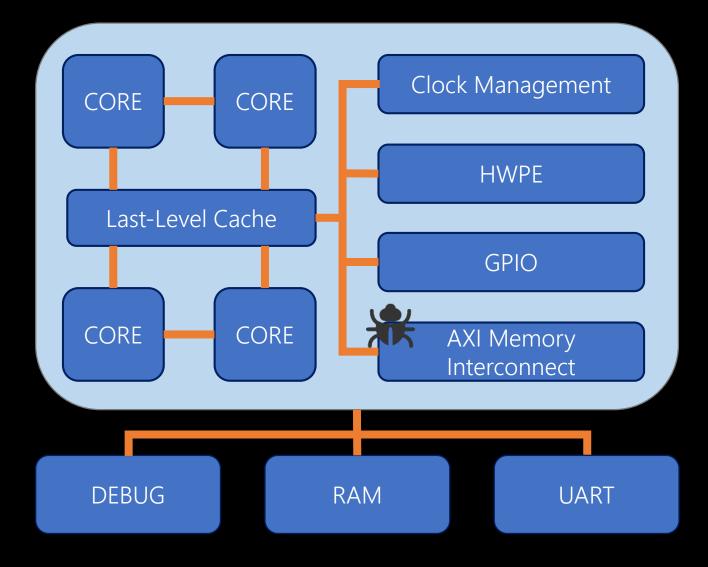
Timer

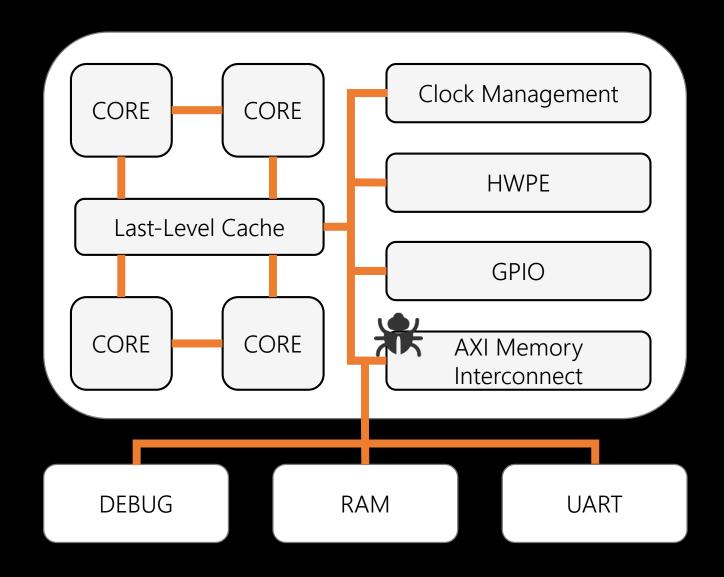
AXI = Advanced Extensible Interface

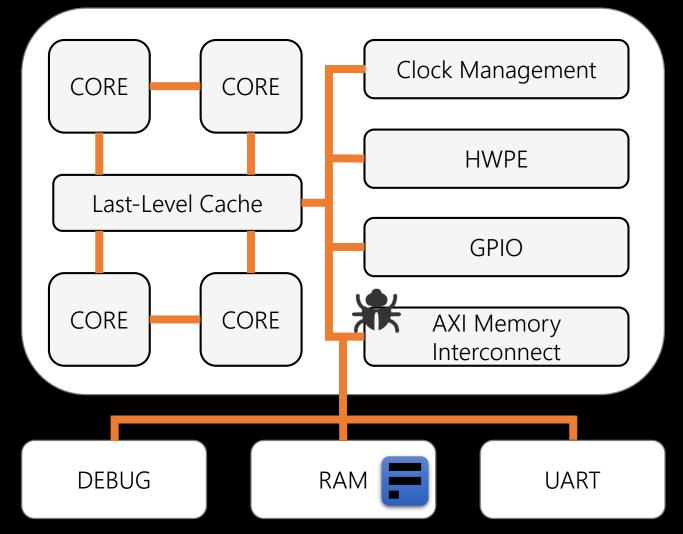
SPI = Serial Peripheral Interface

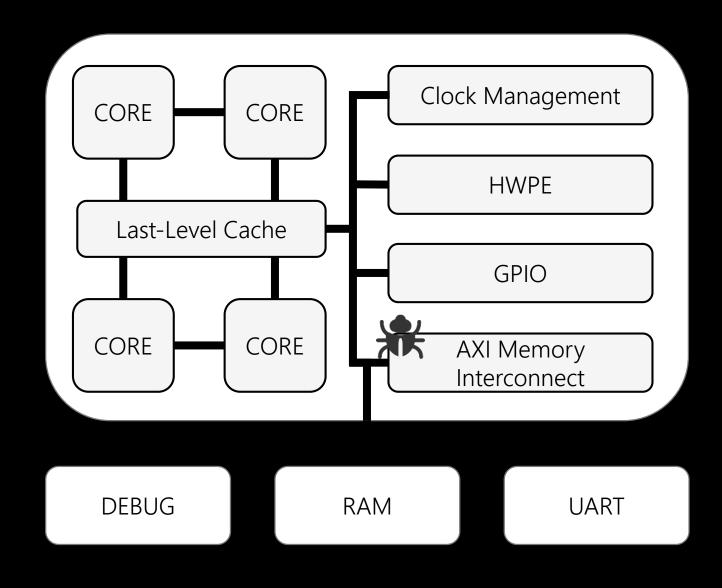

DMA = Direct Memory Access

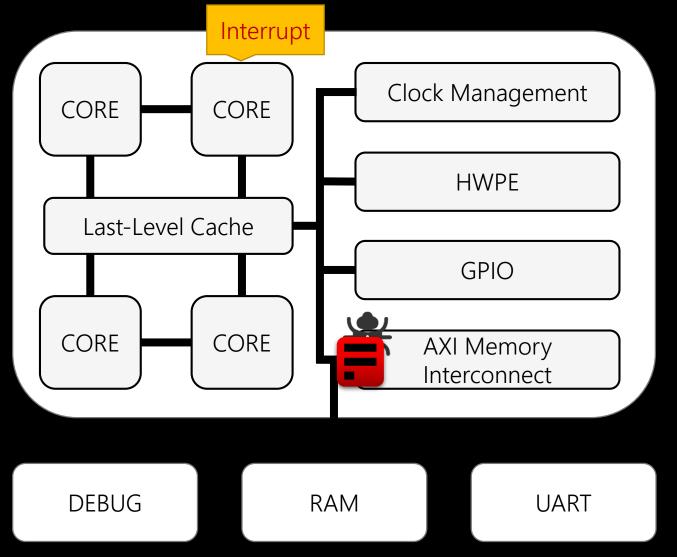
CLK = Real-Time Clock

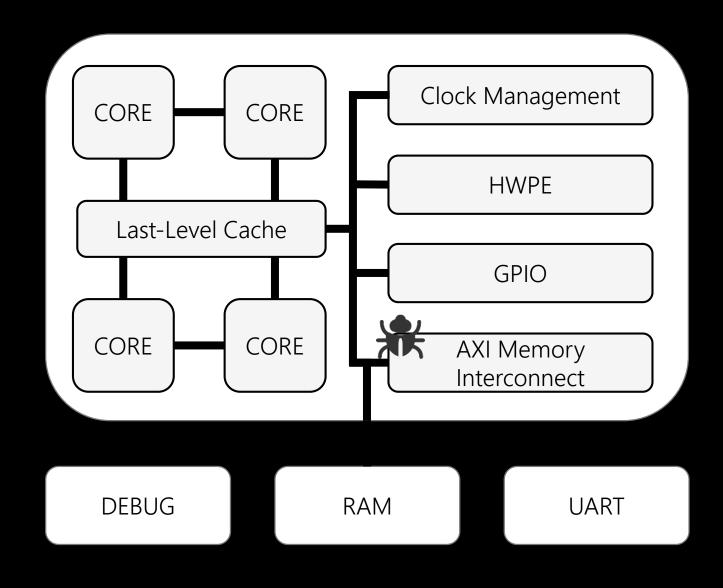

HWPE = Hardware Processing Elements

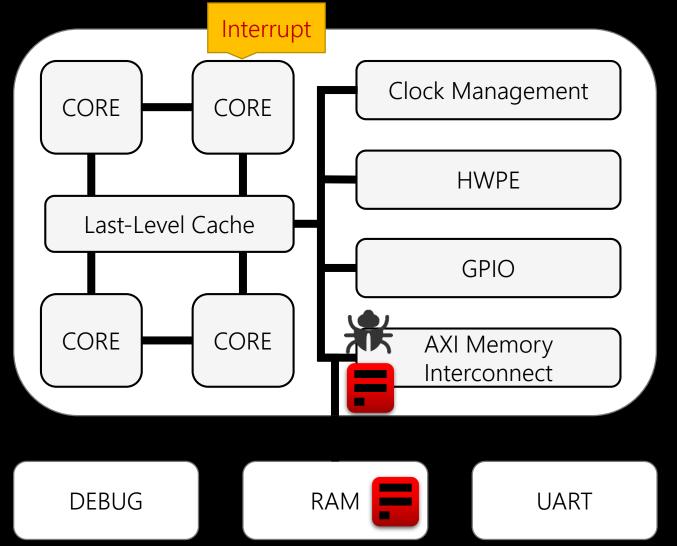

GPIO = General Purpose I/O



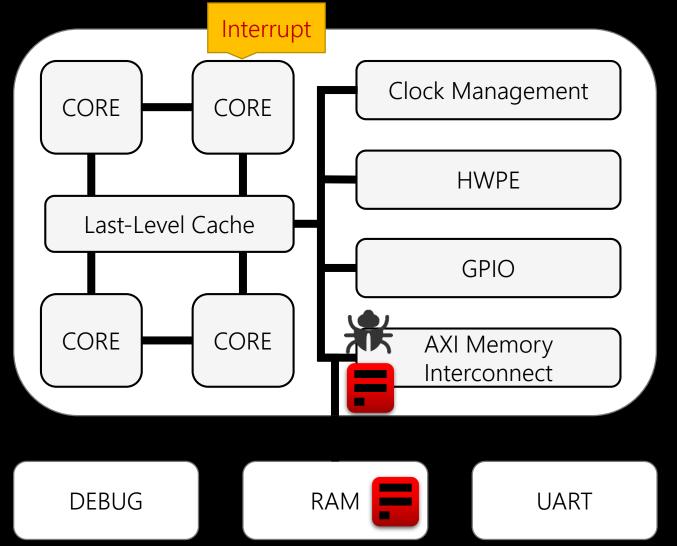

Abstracted SoC to simplify!




Memory access requests are usually sanitized by the page table walker in the CPU core and at the AXI memory interconnect to check whether the memory access is allowed.

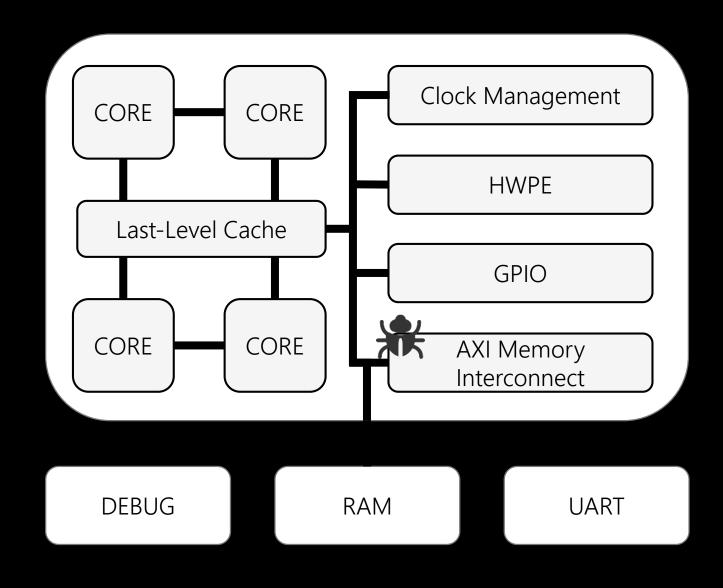


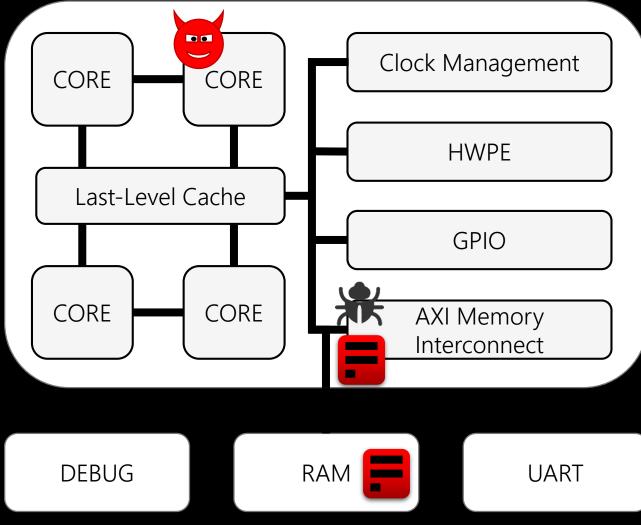
If a faulty/illegal access is detected, an interrupt is generated (even with the injected bug).



The interconnect is still processing a faulty memory access request, and another one comes in.

With this bug, the second request slips through the sanitization check and is allowed to occur even if it is illegal.


Resulting in faulty (illegal) memory access.


The interconnect is still processing a faulty memory access request, and another one comes in.

With this bug, the second request slips through the sanitization check and is allowed to occur even if it is illegal.

Resulting in faulty (illegal) memory access.

One malicious process can compromise the entire platform!

Attacker can register an interrupt handler and spam the bus wtih faulty memory accesses.

Eventually, a malicious memory access will slip through the checks and is allowed.

7	AXI address decoder ignores errors.	Inserted (CVE-2018-4850)	×	1	×	1	227	2
8	Address range overlap between GPIO, SPI, and SoC control peripherals.	Inserted (CVE-2018-12206 / (CVE-2017-5704)	1	1	1	68	14635	9.4×10 ²¹
9	Incorrect password checking logic in debug unit.	Inserted (CVE-2018-8870)	×	1	×	4	436	1
10	Advanced debug unit only checks 31 of the 32 bits of the password.	Inserted (CVE-2017-18347 / CVE-2017-7564)	×	1	×	4	436	16
11	Able to access debug register when in halt mode.	Native (CVE-2017-18347 /	×	1	1	2	887	1
12	Password check for the debug unit does not reset after successful check.	Inserted (CVE-2017-7564)	×	1	1	4	436	16
13	Faulty decoder state machine logic in RISC-V core results in a hang.	Native	×	1	1	2	1119	32
14	Incomplete case statement in ALU can cause unpredictable behavior.	Native	×	1	1	2	1152	4
15	Faulty timing logic in the RTC results in inaccurate calculation of time.	Native	×	1	×	1	191	1
16	Reset for the advanced debug unit not operational.	Inserted (CVE-2017-18347)	×	×	1	4	436	16
17	Memory-mapped register file allows code injection.	Native	×	×	1	1	134	1
18	Non-functioning cryptography module causes DOS.	Inserted	×	×	×	24	2651	1
19	Insecure hash function in the cryptography module.	Inserted (CVE-2018-1751)	×	×	×	24	2651	N/A
20	Cryptographic key for AES stored in unprotected memory.	Inserted (CVE-2018-8933 / CVE-2014-0881 / CVE-2017-5704)	×	×	×	57	8955	1
21	Temperature sensor is muxed with the cryptography modules.	Inserted	×	×	1	1	65	1
22	ROM size is too small preventing execution of security code.	Inserted (CVE-2018-6242 /) CVE-2018-15383)	×	×	1	1	751	N/A
23	Disabled zero RISC-V core.	Inserted (CVE-2018-12206)	×	×	×	1	282	N/A
24	GPIO enable always high.	Inserted (CVE-2018-1959)	×	×	×	1	392	1
25	Secure mode not required to write to RISC-V core control registers.	Inserted (CVE-2018-7522 / CVE-2017-0352)	×	×	1	1	745	1
26	Advanced debug unit password is hard-coded and set on reset.	Inserted (CVE-2018-8870)	×	×	1	1	406	16
27	Secure mode is not required to write to interrupt registers.	Inserted (CVE-2017-0352)	×	×	1	1	303	1
28	JTAG interface is not password protected.	Native	×	×	1	1	441	1

7	AXI address decoder ignores errors.	Inserted (CVE-2018-4850)	×	1	×	1	227	2
8	Address range overlap between GPIO, SPI, and SoC control peripherals.	Inserted (CVE-2018-12206 / (CVE-2017-5704)	1	1	1	68	14635	9.4×10 ²¹
9	Incorrect password checking logic in debug unit.	Inserted (CVE-2018-8870)	×	1	×	4	436	1
10	Advanced debug unit only checks 31 of the 32 bits of the password.	Inserted (CVE-2017-18347 / CVE-2017-7564)	×	1	×	4	436	16
11	Able to access debug register when in halt mode.	Native (CVE-2017-18347 /	×	1	1	2	887	1
12	Password check for the debug unit does not reset after successful check.	Inserted (CVE-2017-7564)	×	1	1	4	436	16
13	Faulty decoder state machine logic in RISC-V core results in a hang.	Native	×	1	1	2	1119	32
14	Incomplete case statement in ALU can cause unpredictable behavior.	Native	×	1	1	2	1152	4
15	Faulty timing logic in the RTC results in inaccurate calculation of time.	Native	×	1	×	1	191	1
16	Reset for the advanced debug unit not operational.	Inserted (CVE-2017-18347)	×	×	1	4	436	16
17	Memory-mapped register file allows code injection.	Native	×	×	1	1	134	1
18	Non-functioning cryptography module causes DOS.	Inserted	×	×	×	24	2651	1
19	Insecure hash function in the cryptography module.	Inserted (CVE-2018-1751)	×	×	×	24	2651	N/A
20	Cryptographic key for AES stored in unprotected memory.	Inserted (CVE-2018-8933 / CVE-2014-0881 / CVE-2017-5704)	×	×	×	57	8955	1
21	Temperature sensor is muxed with the cryptography modules.	Inserted	×	×	1	1	65	1
22	ROM size is too small preventing execution of security code.	Inserted (CVE-2018-6242 /) CVE-2018-15383)	×	×	1	1	751	N/A
23	Disabled zero RISC-V core.	Inserted (CVE-2018-12206)	×	×	×	1	282	N/A
24	GPIO enable always high.	Inserted (CVE-2018-1959)	×	×	×	1	392	1
25	Secure mode not required to write to RISC-V core control registers.	Inserted (CVE-2018-7522 / CVE-2017-0352)	×	×	1	1	745	1
26	Advanced debug unit password is hard-coded and set on reset.	Inserted (CVE-2018-8870)	×	×	~	1	406	16
27	Secure mode is not required to write to interrupt registers.	Inserted (CVE-2017-0352)	×	×	1	1	303	1
28	JTAG interface is not password protected.	Native	×	×	1	1	441	1

Some bugs were very difficult to detect

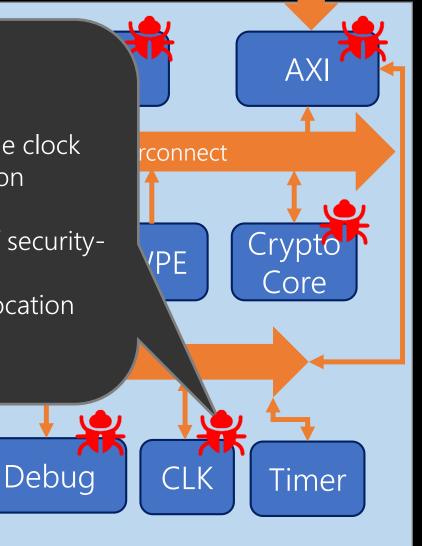
7	AXI address decoder ignores errors.	Inserted (CVE-2018-4850)	×	1	×	1	227	2
8	Address range overlap between GPIO, SPI, and SoC control peripherals.	Inserted (CVE-2018-12206 / (CVE-2017-5704)	1	~	1	68	14635	9.4×10 ²¹
9	Incorrect password checking logic in debug unit.	Inserted (CVE-2018-8870)	×	~	×	4	436	1
10	Advanced debug unit only checks 31 of the 32 bits of the password.	Inserted (CVE-2017-18347 / CVE-2017-7564)	×	~	X	4	436	16
11	Able to access debug register when in halt mode.	Native (CVE-2017-18347 /	×	1	1	2	887	1
12	Password check for the debug unit does not reset after successful check.	Inserted (CVE-2017-7564)	×	1	1	4	436	16
13	Faulty decoder state machine logic in RISC-V core results in a hang.	Native	×	1	1	2	1119	32
14	Incomplete case statement in ALU can cause unpredictable behavior.	Native	×	1	1	2	1152	4
15	Faulty timing logic in the RTC results in inaccurate calculation of time.	Native	×	1	×	1	191	1
16	Reset for the advanced debug unit not operational.	Inserted (CVE-2017-18347)	×	×	1	4	436	16
17	Memory-mapped register file allows code injection.	Native	×	×	1	1	134	1
18	Non-functioning cryptography module causes DOS.	Inserted	×	×	×	24	2651	1
19	Insecure hash function in the cryptography module.	Inserted (CVE-2018-1751)	×	×	×	24	2651	N/A
20	Cryptographic key for AES stored in unprotected memory.	Inserted (CVE-2018-8933 / CVE-2014-0881 / CVE-2017-5704)	×	×	×	57	8955	1
21	Temperature sensor is muxed with the cryptography modules.	Inserted	×	×	1	1	65	1
22	ROM size is too small preventing execution of security code.	Inserted (CVE-2018-6242 /) CVE-2018-15383)	×	×	1	1	751	N/A
23	Disabled zero RISC-V core.	Inserted (CVE-2018-12206)	×	×	×	1	282	N/A
24	GPIO enable always high.	Inserted (CVE-2018-1959)	×	×	×	1	392	1
25	Secure mode not required to write to RISC-V core control registers.	Inserted (CVE-2018-7522 / CVE-2017-0352)	×	×	1	1	745	1
26	Advanced debug unit password is hard-coded and set on reset.	Inserted (CVE-2018-8870)	×	×	1	1	406	16
27	Secure mode is not required to write to interrupt registers.	Inserted (CVE-2017-0352)	×	×	1	1	303	1
28	JTAG interface is not password protected.	Native	×	×	1	1	441	1

Some bugs were very difficult to detect

Some bugs could not be detected at all

7	AXI address decoder ignores errors.	Inserted (CVE-2018-4850)	×	1	×	1	227	2
8	Address range overlap between GPIO, SPI, and SoC control peripherals.	Inserted (CVE-2018-12206 / (CVE-2017-5704)	1	1	1	68	14635	9.4×10 ²¹
9	Incorrect password checking logic in debug unit.	Inserted (CVE-2018-8870)	×	1	×	4	436	1
10	Advanced debug unit only checks 31 of the 32 bits of the password.	Inserted (CVE-2017-18347 / CVE-2017-7564)	×	1	×	4	436	16
11	Able to access debug register when in halt mode.	Native (CVE-2017-18347 /	×	1	1	2	887	1
12	Password check for the debug unit does not reset after successful check.	Inserted (CVE-2017-7564)	×	1	1	4	436	16
13	Faulty decoder state machine logic in RISC-V core results in a hang.	Native	×	1	1	2	1119	32
14	Incomplete case statement in ALU can cause unpredictable behavior.	Native	×	1	1	2	1152	4
15	Faulty timing logic in the RTC results in inaccurate calculation of time.	Native	×	1	×	1	191	1
16	Reset for the advanced debug unit not operational.	Inserted (CVE-2017-18347)	×	×	1	4	436	16
17	Memory-mapped register file allows code injection.	Native	×	×	1	1	134	1
18	Non-functioning cryptography module causes DOS.	Inserted	×	×	×	24	2651	1
19	Insecure hash function in the cryptography module.	Inserted (CVE-2018-1751)	×	×	×	24	2651	N/A
20	Cryptographic key for AES stored in unprotected memory.	Inserted (CVE-2018-8933 / CVE-2014-0881 / CVE-2017-5704)	×	×	×	57	8955	1
21	Temperature sensor is muxed with the cryptography modules.	Inserted	×	×	1	1	65	1
22	ROM size is too small preventing execution of security code.	Inserted (CVE-2018-6242 /) CVE-2018-15383)	×	×	1	1	751	N/A
23	Disabled zero RISC-V core.	Inserted (CVE-2018-12206)	×	×	×	1	282	N/A
24	GPIO enable always high.	Inserted (CVE-2018-1959)	×	×	×	1	392	1
25	Secure mode not required to write to RISC-V core control registers.	Inserted (CVE-2018-7522 / CVE-2017-0352)	×	×	1	1	745	1
26	Advanced debug unit password is hard-coded and set on reset.	Inserted (CVE-2018-8870)	×	×	~	1	406	16
27	Secure mode is not required to write to interrupt registers.	Inserted (CVE-2017-0352)	×	×	1	1	303	1
28	JTAG interface is not password protected.	Native	×	×	~	1	441	1

Some bugs were very difficult to detect


Some bugs could not be detected at all

And some of the teams detected "native" bugs not injected by us!

Example of a "Native" Bug

to AXI interconnect

SPI Bug #15 Type: incorrect computation Master Cause: faulty logic in the real-time clock $|^2S$ causing inaccurate time calculation $|^2C$ Effect: can violate the integrity of securitycritical flows, e.g., Digital Rights Management and certificate revocation UART Similar to CVE-2018-4853 Camera Interface Power lem **GPIO** MGMT Sensor Control

AXI = Advanced Extensible Interface

SPI = Serial Peripheral Interface

DMA = Direct Memory Access

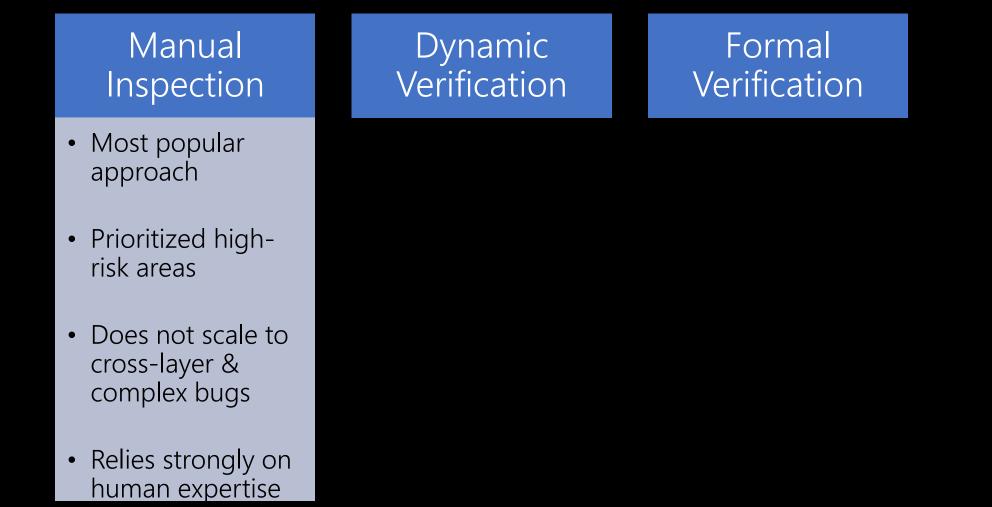
CLK = Real-Time Clock

HWPE = Hardware Processing Elements

GPIO = General Purpose I/O

Study I: Competition Setup

- Phase I:
 - preliminary qualification where 54 teams participated world-wide over 12 weeks to detect the bugs
 - Pulpino SoC


Study I: Competition Setup

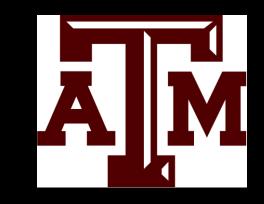
- Phase I:
 - preliminary qualification where 54 teams participated world-wide over 12 weeks to detect the bugs
 - Pulpino SoC
- Phase II:
 - on-site final competition at DAC over an 8-hour time-frame
 - More complex PULPissimo SoC → enabled injection of more advanced bugs

Study I: Competition Setup

- Phase I:
 - preliminary qualification where 54 teams participated world-wide over 12 weeks to detect the bugs
 - Pulpino SoC
- Phase II:
 - on-site final competition at DAC over an 8-hour time-frame
 - More complex PULPissimo SoC → enabled injection of more advanced bugs
- SoCs used are not toy examples yet not overly complex SoC designs for the teams to work with

Manual	Dynamic	Formal
Inspection	Verification	Verification

Manual Inspection	Dynamic Verification	Formal Verification
 Most popular approach 	 Assertion-based simulation using SystemVerilog 	
 Prioritized high- risk areas 	 Software-based testing: running C 	
 Does not scale to cross-layer & complex bugs 	code to try and trigger memory accesses to privileged	
 Relies strongly on human expertise 	memory	


Manual Inspection	Dynamic Verification	Formal Verification
 Most popular approach Prioritized high- 	 Assertion-based simulation using SystemVerilog 	 Tried but failed Limited scalability
 risk areas Does not scale to cross-layer & complex bugs Relies strongly on human expertise 	 Software-based testing: running C code to try and trigger memory accesses to privileged memory 	 Extensive expertise & time required to use the tools

Students

TECHNISCHE UNIVERSITÄT DARMSTADT

- Ghada Dessousky (Ph.D)
- Pouya Mahmoody (Ph.D)

- Rahul Kande (Ph.D)
- Chen Chen (Ph.D)
- Georges Alsankary (Ph.D)
- Bhagyaraja Adapa (Ph.D)
- Garrett Persyn (Grad)